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Abstract

Soft computing is a general term for algorithms

that learn from human knowledge and mimic

human skills. Example of such algorithms are

fuzzy inference systems and neural networks.

Many applications, especially in control engi-

neering, have demonstrated their appropriate-

ness in building intelligent systems that are


exible and robust. Although recent research

have shown that certain class of neuro-fuzzy

controllers can be proven bounded and stable,

they are implementation dependent and di�-

cult to apply to the design and validation pro-

cess. Many practitioners adopt the trial-and-

error approach for system validation or resort

to exhaustive testing using prototypes. In this

paper, we describe our on-going research to-

wards establishing necessary theoretic founda-

tion as well as building practical tools for the

veri�cation and validation of soft-computing

systems. A uni�ed model for general neuro-

fuzzy system is adopted . Classic non-linear

system control theory and recent results of its

applications to neuro-fuzzy systems are incor-

porated and applied to the uni�ed model. It

is hoped that general tools can be devloped

to help the designer to visualize and manip-

ulate the regions of stability and boundedness,

much the same way Bode plots and Root locus

plots have helped conventional control design

and validation.

1 Introduction

Control systems are intrinsically dynamic and their sta-

bility are of primary concern in design. In conventional

control system design, the system is carefully modeled.

Frequency domain methods and state-space methods are

applied to verify the stability of the system for di�erent

operation pro�les and ranges. Some non-linear systems

can be veri�ed through linearization at the point of in-

terest. On the other hand, control systems that employ

soft-computing technology such as fuzzy inference sys-

tem or neural networks lack such established theory as

well as tools for comprehensive veri�cation and testing.

In fact the prevalent approach in neuro-fuzzy commu-

nity towards the V & V of such system is summarized

by Prof. Mamdini in his 1993 paper[Mamdini, 1993]:

Stability is still an important issue but a di�er-

ent way has to be found to study it. In the �nal

analysis all one may be able to do is to build

prototypes for the purpose of approval certi�-

cation. This is a well tried and tested approach

used in industry and there is no reason why it

may not su�ce with control system as well.

There are reasons to believe that the above approach is

too conservative and furthermore it may not be feasible

in certain situations.

Recent results[Levin and Narendra, 1996; Nordgren

and Meckl, 1993; Vidyasagar, 1993; Tanaka, 1995; 1996;

Fang and Kincaid, 1996; Wang, 1993] have shown that,

for certain class of neuro-fuzzy control systems, it is pos-

sible to ascertain the stability and bounds of the sys-

tem with careful choice of parameters or through certain

measurements of weights. These new results are mostly

based on classic non-linear system theory of Liapounov

stability and asymptotic stability and are well founded.

For large complex systems with embedded soft-

computing components, it is not clear whether only

testing the prototype of the soft-computing components

would be su�cient. Finally, any tests conducted on

the prototype short of an exhaustive testing may not

be enough for safety critical systems such as those used

in aerospace industry. An exhaustive testing of a con-

tinuous dynamic system may not be practical or even

possible. Some of the problems of veri�cation of soft-

computing systems have been discussed in [Wen and

Callahan, 1996b; 1996a; Wen et al., 1996].

Our approach is based on the methodology of treat-

ing neuro-fuzzy control system as any general non-linear



system. A fuzzy-neuro model called ANFIS(Adaptive

Network-based Fuzzy Inference System)[Jang, 1996] is

used to model a given neuro-fuzzy system. The control

surface is divided into regions where a predominant set

of linear rules appliy at the core of the region. Bound-

ary conditions are carefully modeled. Stability analysis

algorithms developed for general non-linear system and

some class of neuro-fuzzy systems are then used to verify

the stability of the soft-computing system in each region

and the joining boarders. An example of how this can

be achieved is illustrated using a neuro-fuzzy cart-pole

controller.

The ultimate goal of our work is to develop prac-

tical tools for analyzing and veri�cation of large, dis-

tributed control systems that employ soft-computing

components. Currently the stability veri�cation tool is

applied to project AIRNET[Napolitano and Kincheloe,

1995], which aims at the designing veri�able neural net-

work based auto-pilot for a model Boeing 747 airplane.

We hope to improve the tool through application in this

reasonably complex real-world situation.

The paper is organized as follows: Section 2 describes

elements of classic non-linear system dynamics and sta-

bility theory that are relevant to general neuro-fuzzy sys-

tems. Section 3 describes a general model for an arbi-

trary neuro-fuzzy system. Section 4 describes how meth-

ods described in Section 2 can be applied to the gener-

alized neuro-fuzzy model. Section 5 shows an example

of applying these methods to an simple cart-pole neuro-

fuzzy controller. In Section 6 we conclude and present

future works needed.

2 Dynamic non-linear system and

stability

Neuro-fuzzy systems aim at mimicking human expertise

and adaptiveness to achieve di�cult control tasks. The

building blocks of neuro-fuzzy systems are non-linear

functions such as the logistic function for many neuro-

networks and generalized bell function for fuzzy con-

trollers. These non-linear functions are applied to or are

combined by linear weighting mechanisms to achieve the

required complex functional mapping which describes

the control task at hand. In this section, we introduce

the essentials of non-linear dynamic systems and stabil-

ity criteria that are relevant to the general neuro-fuzzy

systems.

2.1 Non-linear system dynamics

The general form of non-linear system dynamics can be

described by the following di�erential equation:

_x = f(x;u; t) (1)

where x is the state vector, u = g(x) is the control vec-

tor. Notice that higher order di�erentiable terms are

expanded into vectors of �rst order di�erentiables. The

aim of control system design is to �nd appropriate u so

that x follows certain pre-de�ned trajectory.

When the time variable t doesn't appear explicitly in

the right hand side of equation (1), the system is called

an autonomous system. Neuro-fuzzy based control sys-

tems are examples of autonomous systems since the con-

trol actions u is only a function of the state variable x.

2.2 Stability criteria

There is a large amount of theoretic work in the area

of ascertaining stability and instability of dynamic non-

linear system. A good introduction into these theories

can be found in standard textbooks[Jordan and Smith,

1977; Glendinning, 1994]. It's beyond the scope of this

paper to introduce any of these theories. However, we

will summarize some practical methods as applications

of those theories.

� Phase diagram method: plot the trajectory of x for

some given initial starting points. For di�erential

equations with analytic forms, regions of stable and

unstable equilibrium can be quickly identi�ed. Dif-

�cult for high dimension problems.

� Liapounov function method: construct a Liapounov

function around the point of interest based on the

di�erential equations. There is no guarantee that

this Liapounov function can be found and the fail-

ure to �nd one can not be used as the evidence for

instability.

� Perturbation methods: introduce a perturbation

into a well-known system to obtain results for the

class of problems described by the perturbed sys-

tem.

� Linearization methods: linearize the non-linear sys-

tem at the point of interest and apply linear system

theory to non-linear system locally.

More recently there are some interesting results in this

�eld that are directed towards neuro-fuzzy systems:

� Linear di�erential inclusion[Tanaka, 1995; 1996]:

neuro-fuzzy systems are represented as linear combi-

nation of some class of special nonlinear functions.

Based on the properties of the class of non-linear

functions and the coe�ciency of linear summation,

stability of these type of neuro-fuzzy systems can be

veri�ed.

� Matrix measurement method[Fang and Kincaid,

1996]: a matrix measurement is introduced from the

(matrix) di�erential equations. This measurement

can be used to ascertain the stability of the under-

lying system. Certain neuro-fuzzy implementation

can be shown to have a matrix measurement that

could guarantee stability.



Some of the methods were developed to ascertain sta-

bility of neural networks during the learning process.

These methods are concerned with the convergence and

stability property of neural networks in the learning pro-

cess. However, the results applies to the stability of any

dynamics system that can be described by di�erential

equations. The overall system stability can be ascer-

tained if we can obtain similar measurements for the

system dynamics di�erential equations.

The above methods provide us with the building

blocks for developing a tool to help visualizing and ma-

nipulate the stability and boundaries of arbitrary neuro-

fuzzy systems.

3 Neuro-fuzzy control system

Neural networks and fuzzy logic have been studied for

decades, mostly in separation. Neural networks were

mainly used to learn complex mapping between known

input-output pairs. It requires a \teacher" to provide

data for the \learning". It mimics human or other

\teacher" by repeating exactly what the \teacher" did

in exact the same situation.

On the other hand, fuzzy logic emphasizes on rules

that map situations to actions. It does not try to mimic

exactly what the \teacher" does but aim at extracting

the essence of decision making process of the \teacher".

Recently, researchers have realized that by combining

the rule-extracting and adaptive learning, more powerful

systems can be built that incorporates human knowledge

and skill by learning from what humans think and what

humans do at the same time. Moreover, the layered

propagation structure of the neural networks and fuzzy

rule �ring structure are very similar. They can be com-

bined naturally to form what is called the neuro-fuzzy

system.

3.1 ANFIS model for general neuro-fuzzy
system

Various neuro-fuzzy systems have been proposed[Lin and

Lee, 1991; Takagi and Sugeno, 1991] in recent years. The

basic idea is to construct a fuzzy logic system that can

adapt its membership function or rules based on back-

propagation or other optimization methods. The AN-

FIS(Adaptive Network-based Fuzzy Inference System)

tool proposed by Jang[Jang and Sun, 1995] is probably

the simplest one with an implementation on a popular

platform, MATLAB[Jang, 1996]. It is used in our work

as the uni�ed model for arbitrary neuro-fuzzy system.

To justify this property, we will introduce brie
y the rel-

evant elements of the ANFIS system.

ANFIS is the network implementation of the Sugeno

fuzzy inference system[Takagi and Sugeno, 1985]. The

network topology and inference rules are shown in Figure

1. x; y are inputs to the controller and g is the controller

output. Ai and Bi are square nodes that represent the

membership functions which have three adaptive param-

eters: the center, the width and steepness. The �rst layer

of circle nodes(indicated by a �) are �xed nodes which

perform the fuzzy MIN operation. The next layer of

nodes are also �xed nodes(indicated by circles with =+)

which perform fuzzy MAX operation. The next layer

of square nodes(indicated by f1 and f2) are the linear

rules to be �red. They each has three or more adaptive

parameters which uniquely determine a straight line or

plane(the linear rule).
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Figure 1: The Adaptive Network-based Fuzzy Inference

System, courtesy to R. Jang

ANFIS can be used as a model for an arbitrary neu-

ral network or fuzzy controller. The modeling of a fuzzy

inference system is straight forward by substitution of

membership functions and fuzzy rules. In the case of a

neural network controller, once it has been trained, the

trained neural networks can be used to generate train-



ing data for ANFIS. Since ANFIS is a universal function

approximator[Jang and Sun, 1995], in theory, it is pos-

sible to approximate any trained neural networks to any

degree of closeness. This observation forms the basis of

our justi�cation to use ANFIS as the model for arbitrary

neuro-fuzzy system. It must be noted that although AN-

FIS will approximate the trained neural networks of in-

terest to any degree of closeness, it may not approximate

the original training dataset well due to factors such as

incomplete dataset etc. ANFIS is used here as a model

of the trained neural networks, not the original systems.

3.2 Divide and conquer with ANFIS

In order to visualize and manipulate the neuro-fuzzy con-

troller with respect to its state space, the input space

must be divided into regions that share similar proper-

ties with respect to stability etc. Once ANFIS is trained

using the underlying neuro-fuzzy system, rules are re-

�ned and extracted. Fuzzy membership functions are

also obtained which partitions the input space into re-

gions where one dominant rule applies.

The following example in Figure 2 shows how ANFIS

can divide and conquer the input space into meaningful

regions in which a dominant linear rule applies. The

training data is generated from the following equation:

f(u) = 0:6 sin(�u) + 0:3 sin(�u) + 0:1 sin(5�u):

The �nal MFs shows the partitions in which a domi-

nant linear rule applies. This ability to divide and con-

quer is essential to our approach of developing tools to

visualize and manipulate the neuro-fuzzy system to as-

certain stability and other properties. It does so by al-

lowing us to gain some understanding of what the un-

derlying neuro-fuzzy system actually looks like. In other

word, ANFIS provides us with hints on what the neural

networks have learned from training data.

It must be pointed out that this divide and conquer

process is not completely automatic and requires care-

ful human intervention. The number of partitions must

be pre-determined and improper choices can lead to erro-

neous results. Figure 3 shows the results with four parti-

tions. It is clear that the extracted linear rules are hardly

representative of its partition. Care must be taken in se-

lecting the number of partitions. The only way to assure

correct choice is through trial-and-error.

4 Veri�cation of dynamic neuro-fuzzy

system

In Section 2.2 we have introduced a few methods for

ascertaining stability of some special class of neuro-fuzzy

control systems. To apply them to the ANFIS model,

some modi�cations must be made. In this section we

will describe our strategy with intention of applying it

in an embedded neural network controller. Figure 2: Input space are divided into three regions in

which a dominant linear rule applies



Figure 3: Choice of number of partitions are crucial to

divide and conquer process

4.1 A general framework

The stability of the learning algorithmof neural networks

and that of the system being controlled by the neural

networks are quite di�erent matters. However, they can

both be represented by a set of general di�erential equa-

tions. A general dynamic system under control can be

describe as follows: plant dynamics

_x = f(x;u); (2)

and controller

u = g(x): (3)

This is shown schematically in Figure 4.

The purpose of control is to �nd appropriate control

actions u = g(x) so that x follows certain pre-de�ned

trajectory. Once u is determined, the di�erential equa-

tion becomes

_x = f(x; g(x)):

In general this can be considered as an autonomous

system and a number of methods mentioned in Section

2.2 can then be used to ascertain the overall system sta-

bility. However, before they can be applied directly to

the ANFIS model, some modi�cation must be made.

Usually ANFIS is used to model the control function

u = g(x) only. In order to ascertain the overall system

stability, it is necessary to generate appropriate represen-

tation for the overall system dynamics di�erential equa-

tions.

In most situations, the plant dynamics are obtained

from physical properties of the system and have analyti-

cal form. Once we obtained the control laws it is possible

to generate an ANFIS representation of the overall sys-

tem dynamics. Given a state x, control action u is deter-

mined by the neuro-fuzzy controller ouputs. Moreover,

_x can be determined from euqation (2) by substitution

of u with g(x). The pair x and _x can then be used to

train a new ANFIS model to represent the overall system

dynamics. Divide and conquer can be used and the state

space can be partitioned into regions in which dominant

rule applies.

In the case of ANFIS, these rules will be linear. LDI

method, matrix measure method or linear perturbation

method can be used in each region to ascertain the sta-

bility of the overall system.

4.2 The AIRNET testbed

Our long term objective is to develop tools that can help

to visualize and manipulate properties such as bounded-

ness and stability of arbitrary neuro-fuzzy systems. To

this end, we are in the process of developing this tool for

its use within the AIRNET project[Wen et al., 1996].

The AIRNET project consists of a 1:10 scale model of

a Boeing 747 �tted with a neural network based sensing

and estimation subsystem and a neural network based

auto-pilot subsystem. These neural network subsystems

u=g(x)

delay

x

x

x

u

Plant dynamics

x=f(x,u)

Controller

.

Figure 4: A general dynamic system



are distributed over seven micro-processors located on

various part of the airplane body.

Currently the model airplane is controlled by remote

radio controls and test 
ies are conducted to gather

enough data to train the neural networks. Once trained,

the sensor neural network subsystem will be responsible

for generating robust estimation of airplane aerodynamic

states. The auto-pilot neural network subsystem will be

responsible to maintain certain maneuvers such as alti-

tude hold, speed hold and climbing etc.

For systems as complicated as this, simple stable or

unstable criteria is not su�cient. We must provide tools

that help to visualize and manipulate these properties

in the entire state space. Furthermore, these neural net-

work subsystems are embedded in the overall system, it

is essential that they can be manipulated conveniently

to achieve better performance for the overall system.

4.3 Validation strategy

The sensing subsystem and the control subsystem must

be validated separately. The sensing subsystem is im-

plemented as follows: �rst a mathematical model of the

airplane is built and neural networks is trained using

data generated by the math model. Then test 
ights

are conducted to gather real aerodynamic data for the

model airplane. The real data is also used to train the

neural networks. ANFIS is then applied to both neural

networks to extract the rules and partitions. The results

for both neural networks are then compared. The math

model is modi�ed to maintain consistency with the real

data.

The next step is to train the neural network auto-pilot.

This will be achieved through many cycles of coaching

using remote radio control. Once the weight are �xed,

we need to validate the neural network auto-pilot for

stability. This again will be achieved through application

of divide and conquer using ANFIS, followed by stability

veri�cation methods described in Section 2.2.

The complexity of the auto-pilot system poses great

challenge to our approach. One of the major problem

we are facing now is that ANFIS only allows one output.

Currently we have to use one ANFIS network for each

output. We are working to extend ANFIS to multiple

outputs.

5 Experimentation

To illustrate the applicability of the stability veri�cation

tool, we present an simple example of neuro-fuzzy con-

troller. The original controller is implemented in stan-

dard BP neural networks.

5.1 A cart-pole controller

Figure 5 shows a cart-pole system which has been used

extensively to demonstrate various kinds of control algo-

θ

F

θ
.

cm

m

Figure 5: A cart-pole balancing problem

Figure 6: Control surface of the neural network cart-pole

controller

rithms. The objective of the controller is to maintain a

balanced position for the pole through exerting a hori-

zontal force on the cart. The plant model is as follows:

_x =

2
64
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3
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Figure 6 shows the control surface of the original neu-

ral network controller. First the original neural network

controller is used to generate training data for ANFIS.

Next ANFIS is applied to partition the input space and

extract dominant linear rules in these partitions. The

following is the extracted rules:



Figure 7: Partitioning of input space through ANFIS

if � is A1 and _� is B1, then

force = 0:05�+ 0:165 _�� 10:1

if � is A1 and _� is B2, then

force = 0:008�+ 0:012 _� � 1:1

if � is A2 and _� is B1, then

force = 0:008�+ 0:012 _� + 1:1

if � is A2 and _� is B2, then

force = 0:05�+ 0:165 _�+ 10:1

The resulting membership function is plotted in Figure

7.

From the dynamic system di�erential equation and the

ANFIS controller we can obtain an ANFIS representa-

tion of the system dynamic model. Figure 8 shows the

phase diagram of the overall system model generated by

ANFIS. The horizontal axis is the angular displacement

x1 and the vertical axis is the angular velocity x2. It

can be clearly seen that the origin is a stable equilib-

rium point.

Figure 8: Phase diagram of the neural-fuzzy cart-pole

controller

6 Conclusions and future work

This paper described our on-going work in developing

a practical tool for help visualizing and manipulating

neuro-fuzzy controllers to ascertain their stability in re-

gions of interest. The essence of this approach is to use

ANFIS as a uni�ed model for arbitrary neuro-fuzzy sys-

tem. Moreover, an ANFIS model is generated to rep-

resent the overall system dynamics. This ANFIS model

thus provide us with an e�ective partition of the state

space and linear rules that are dominant in those par-

titions. A number of stability methods can be applied

in each of these regions and veri�cation of the overall

stability of the system can be achieved.

So far our only implementation is on a simple cart-pole

problem. The e�ectiveness of this approach will be fully

tested when we apply it to more complicated situations.

Our long term objective is to develop a tool that allow

us to deal with distributed neuro-fuzzy systems. Future

work will include

� extend ANFIS to allow multiple outputs;

� build toolkits that use di�erent methods such as the

LDI methods, matrix measure methods and phase

diagrammethods to deal with di�erent subsystems;

� build a set of interfaces to allow simulation of em-

bedded neuro-fuzzy systems.
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